GRAPESを「幾何」で使うための初歩の初歩 ~「数学A」の平面図形での活用に向けて~

1 はじめに

前ページまで,ひたすら,関数を表示し,生 徒たちに動的シミュレーションを味わってもら ってきました。しかしさらに,友田先生のたい へんな御努力により,以前よりも幾何の分野に おいても使用することが可能となっております ことを御存知でしょうか。幾何のソフトといえ ばフリーソフトのGeometric Constructor(愛知 教育大学 飯島康之先生作)や,フリーソフト ではないものとして, Cabri Geometry plus や,ジオメターズスケッチパッドなどが有名で す。しかし今回は,あくまで,使い慣れた GRAPESを使用して「数学A」での実践につな げるための「幾何の分野で使うための初歩の初 歩」を書いてみたいと思います。「初歩の初歩」 というタイトルをつけたように,初めて幾何で 使ってみようと思う方を対象に書いています。 この文章をお読みいただくだけで、あたかも操 作しているように感じていただければ幸いです。 なお,本原稿も文英堂の数学教科書『高等学校 新編数学A』(教科書番号014)を参考に書いて います。文中に「教科書 p. 」と出てきた場 合は,そのページの内容を扱っております。

(1)座標軸の消し方

まず初めに初期画面から座標軸を消しましょ う。これが幾何で使うための第一歩となります。 使用するGRAPESのバージョンは6.37としてい ます。関数を扱うのと違うところ,それは,座 標軸の有無ですね。あくまで点の移動そのもの としては,もちろん座標が大きな役割をはたす のですが,「見せる」場合には,座標は不要と なります。そこで座標軸を消してみましょう。

(図1)お馴染みのGRAPESの初期画面 図1は,お馴染みのGRAPESの初期画面です。 この画面の上部の座標マークのところにマウス を持っていくと,図2のように「目盛/軸表示」 と表示されるところがあります。

(図2)「目盛/軸表示」と表示されたところ ここをクリックしてみてください。座標が 様々に変化して,4回目には,キレイになくな ってしまいます。さらにクリックすると,また 現れますので御安心を。

(2) 点の打ち方

次に, 点を打たないことには, 始まりません。 画面上で右クリックして, 点を打ってみましょ う。とにかく, 点 A, 点 B, 点 C の 3 点を順に 打ってみましょう。もちろん, ドラッグアンド ドロップでどこへでも, 好きなところに移動す ることができますから, 御安心を。

ここで図3のように右クリックしてマウスを 「点を打つ」にもっていってみましょう。打ち たい点の名前が表示されます。

# inst	2 7 X 2 1 4 4 1 4
##47.86 数第75-8	2-2 MB AX 147
XX出路袋 局導系中回車面	000 m 00.
	-1-3MA
	6. 24
	+ 5M8
	0.00
	6.84
	16 B 4 (18)
	A (849,879)
	30 (1-8406, 1-8489)
	C (246, -136)
	6.68-
	B / 8./-2
	12.00
	A MINE IN
	6. 10.0
-	(C 44 [] -19
EDUCTOR HERE CONTRACTORS AND CALLED	

(図4)

そして適当に点 A, 点 B, 点 Cを打ってみま しょう。

(3) 点の結び方(長さの表示)

次に,点と点を結んで三角形を作ってみましょう。さきほどの右クリックをして,図5のように「点を結ぶ」にマウスをもっていってみて ください。

AN COMPANY AND A STREET AND A S	LINK CONTRACTOR
(20년 20년 일부는 수비수도	122
	-0.0000 -0.0000 -0.0000 -0.0000 -0.000 -0.0000 -0.000 -0.0000 -0.00000 -0.0000

(図5)

そしてマウスをクリックしますと,図6のように画面の右側に「連結図形」,「点を結ぶ」が 出てきます。

	-2 V-X-X
	* [*] *
- 1	⊷ 連結図形
- 1	▲ 点を結ぶ
- 1	<i>f</i> x 関数定義
- 1	la Mest
- 1	12 編集 🗐 メモ
- 1	
- 1	

(図6)

そして, 例えば点 A のところにマウスをもっていくと, いかにもこれから線をひくように, マウスの形が鉛筆の形に変わります。

(図7)マウスが鉛筆の形に変化

そして,ここからマウスをクリックしたまま ドラッグして,線をひいてみます(図8)。

点Bに到着し,マウスのクリックをやめてみ ると,「連結図形のプロパティ」が出現します (図9)。

(図9)線をひいた直後に現れた 「連結図形のプロパティ」

連結団形のブロバティ
頂点 AB
Sin 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
 ● 太さ 線種 ■ ■<
∋~ν PPP PPP
<u>OK 削除 1+2七ル</u>

(図10)「連結図形のプロパティ」の拡大図

この「連結図形のプロパティ」は,今後, 様々なことを表示させることができる重要なプ ロパティです。

この「連結図形のプロパティ」を見てもわか るように,2点を結ぶ線を「線分」とするか, 「半直線」とするか,「直線」とするかなどを決 めることができます。

そして,マウスを「ラベル」というところに もっていき,「」マークをクリックする(図11)と,

(図11)線分の長さの表示も可能

「!{len(A,B)|3}//長さ」という不思議な文字が出 てきます。ここは本来,線分「AB」というよ うな,名前をつけることが可能な「ラベル」と いう機能です。しかし,ここにさきほどの不思 議な文字(命令)をそのままクリックすると,線 分の長さが表示されるという仕組みなのです。 これは,すでに友田先生が「ここの長さを表示 するための命令」を我々が書かなくてもすむよ うに,事前に書いていてくださっているもので す。ラベルをさきほどの「命令」にして,「OK」 を押してみると,ここの線分の長さが表示され ます(図12)。

(図12) 表示された「線分の長さ」

(4)3点を結んだ角度の表示

さて次に,角度の表示です。ここで角度の表示というと,高等学校で扱う場合には,「度数法」と「弧度法」が問題になると思います。 GRAPESでは,どちらでも表示できるように設計されています。画面上部の「オプション」 (図13)をクリックし,その中の「関数」のタ プをクリックしてみます(図14)。

⁽図14)オプションの中の「関数」タブをクリ ック

🕼 オブション	×
標準設定 領域 目盛 グ	ラフ 関数
logの扱い	
自然対数 常用対数	
角の単位	
弧度法 度数法 🔓	
角の範囲	
0→2π –π→π Ъ	
陰関数中の8の扱い	
偏角 パラメータ	
負の動径	
認める 認めない	
	20100/1-
	1/18/11
<u>o K</u>	<u>キャンセル</u>

(図15)「関数」タブの中身。

ここでは,角の単位は「度数法」に,また, 角の範囲は,「-180 から+180 まで」を意味す る「- 」にそれぞれ変更してみます。そ してOKとします(図15)。

画面上では、何も変化がないようですが、こ こから実際に角度を表示させてみると、その変 化がはっきり分かります。まず初めに、さきほ どの続きとして、図16のように点Bから点Cに 線分を結んで ABCを作ります。そして、これ から、 ABCの角度を表示させるために図17 のように再度、点Aから点Bに向かって線を結 んでみます。

(図16) 点 B から点 C に結んでいるところ

(図17) 再度点 A から点 B に向かって結んで いるところ

このあと,点Bに到着してマウスのドラッグ を離すと,また「連結図形のプロパティ」が表 示されます。ここで,次のようにしてみてくだ さい。

- 1.頂点のところには, ABとしか記入されて いないので,自分でCを追加記入する。
- 2.図形は「角」を選んでクリック
- ラベルには,友田先生が,すでに角度を表示できるよう準備してくださっているので, それを選択。

これで「OK」としてみてください(図18)。 角度が度数法で表示されます。

(図18)角度を表示させるための設定

すると,この場合の角度52.6°が表示されました(図19)。

ではこの後,1つの点(例えば点A)をつま んで動かしてみましょう。当然ながら,ABの 長さも変わるでしょうし,ABCの角度も変わ ります。

ここで,いきなり点Aをつまもうとしても, まだ,このままでは「点を結ぶ」が生きてしま っています(図20)。画面右側の「点を結ぶ」 をクリックして,解除します(図21)。 この状態でマウスを点 A にもっていってみて ください。点 A をつまんで動かせるようにマウ スポインタが手の形に変化します (図 22)。

そして点Aを動かしてみましょう。

ABの長さや ABCの値が変化しているのを 実感することができます(図23)。

(図20)有効になっている「点を結ぶ」

(図21)無効になった「点を結ぶ」

(5) 中点連結定理

さて,ここまでのことを使って「中点連結定 理」を実際に試してみましょう。この定理を学 ぶのは中学ですが,教科書 p.14 でも取り上げて います。

まずは,図24のように点Aと点Cを結びAB の長さの表示をはずしました。

(図24) そして,次に点Aと点Bの中点を打ってみましょう。この点はPとしてみましょう(図25,26)

(図26)今回は単純に「点」

国形P のナロパティ	×
種類 ● ○ -	- 1 %ar <u>14</u>
<i>P</i> =	● 戸 尽クトル表記 点の入力
点 <u>き 太さ</u> ミ ~●	● 1000000000000000000000000000000000000
ラベル P	▶ PPP PPP PPP
<u>OK</u> 削	<u> 除 <u>キャンセル</u></u>

(図27)

ここで,図27のように「ベクトル表記」をク リックし,x,yの表記を「一本化」します。

@ U.	tæ	ŧ.				
P =		分別	氘(A,B)			
mid(A,E	9)				_
関数	N	[数2	関数3 関	1数4	4	►
Α	в	С	len	[]		
D	Е	F	arg	det •	а	Ľ
G	\mathbf{H}	I	roll	回転	С	á
J	к	L	分点。	交点	m	ħ
M	\mathbb{N}	Р	垂足	接点	р	9
Q	\mathbf{R}	S	外心	外径	\$	1
Т	0	Х	内心	内径	#	1
.x	.y	.r	重心	垂心	k	é
中点:mi	d(A,E	30,分	dī: mid(A,B)	m,n)		
			(図28)		

そして,関数電卓の「関数3」のタブに入っ

ている「分点」を使って点Pの入力をします。

(図32)点Pと点Qを「点を結ぶ」モードで結 んでいるところ

(図33)長さ,そして APQも表示

(図34)「つまめるモード」でいろいろ動かし てみましょう

(6) 円の表示

さて,直線や角度が表示できるようになりま したら,次は何と言っても,円ということにな ります。しかし,円を表示するだけでしたら, 「基本図形」を使って,それほど,難しくなく できてしまいます。この基本図形に使用できる 文字はP,Q,R,S,T,A,B,C,D,E,F, G,H,I,J,K,L,M,Nと19種類も用意さ れ,「曲線」の共通使用となっています。

(図35)基本図形のPを選択

そして基本図形を選んだ場合,「点」,「円」, 「水平線」,「垂直線」の4つが選択できるよう になっています。今回は,その中の「円」を選 択してみます(図36)。

(図36)その中の「円」を選択

すると,ここで突然,画面が下に伸びて,図 37のように,各パラメータを決められるように なります。この突然現れる方式も,「生徒にと ってやさしい」友田先生のすばらしいアイデア だと感心しております。

(図37)中心と半径を決めるだけ

ここで,半径は,必ずしも「数値」にするこ とはありません。そこがなんといっても GRAPESの最大の魅力です。そう,「パラメー タ」が使えるのです。x = a, y = b, r = cと決め てあげれば,これで, $(x - a)^2 + (y - b)^2 = c^2$ が表示 されることになります。図38は,半径を「残像 あり」にして増やしたものです。

(図38)

(7)円周上の点の表示

(円に内接する四角形 教科書 p.20)

さて,円を描くことは,容易にできましたが, やはり授業で使うことを考えますと,様々なア イデアが必要となります。円を描き,円周上の 点を動かし,そして,角度を表示していく。角 度は,「弧度法」でもよいものの,やはりわか りやすいのは,「度数法」だろうということに なります。そこで,いろいろと思考錯誤をして みました。私がここで発表するよりも,もっと よい表示の仕方があるのかもしれません。また, GRAPESは,友田先生の不断の御努力によって, 日々進化しているソフトですので,もっと簡単 に表せる方法が出てくるかもしれません。とり あえず,ひとつの「石谷のやり方」ということ で,お読みいただければ幸いです。

まず,座標を消し,「度数法」,そして,「-

」にしておきます。(p.23の図15参照)次に, 円周上の点を4つ指定してみましょう(図39)。 いずれ,円周上の点は「動かすこと」が前提と なっています。ここで「基本図形」を使っても 良いのですが,すでにパラメータを使用するこ とを前提としている「曲線」の中の「媒介変数 グラフ」を使用するのがポイントです(図40)。

(図39)まず「曲線」のAを指定

国形A のプロパティ		×
種類		
• •	-	Star 152
<u>0 K</u>	<u>削除</u>	媒介実数/57 1925年

(図40)「媒介変数グラフ」を選択 そして,以下の様にパラメータを指定を行っ てみてください(図41)。

図形A のプロパティ	×
種類	
• • • –	Star Ist
$x = a \cos t + p$	鎌介実数グラフ
$y = a \sin t + q$	
	□ べクトル表記
変域 0 ≤	t ≤ 360
11	1波幅 5 🗘
曲線 色 太さ線種 内	師 □ 天像
≜ 太さ 点 ≥ ~ ●	☞ドラッグ □ 残像
ラベリレ (A(t)	► PPP PPP
<u>ок</u> <u>削除</u>	キャンセル

(図41)「媒介変数グラフ」の各パラメータの 指定

まず a ですが, これで「半径」としています。 そして x, y の p, q は平行移動分です。これら を指定することで, 任意の位置に円をもってい けることを考えています。次に「変域」の右側 は,当初2 となっていたところですが,度数 法なので360としています。さらにここのとこ ろの「増減幅」ですが,当初0.1となっていま したが,これを5としました。一周360°ですの で,「1°ずつ」の変化では,進み方がかなり遅 く感じました。ので「5°ずつ」の変化としまし たが,みなさんお使いのコンピュータでは,そ れぞれ微妙に違うかもしれません。各自,お試 しください。パラメータは,ここでは*t*を使い ました(図42)。

		1	~	ッわ	レ表記	5 C		
	$\leq t$		30	50		_	L	
	shi	t	u	v	θ	p	q	
	a	b	С	đ	m	n	k	
太さ 線種	内部	3					Г	
$\sim -$				Γ	残偷	象	L	
(図42)	使用「	でき	る多	くの	パラ	メー	タ	

また、「点」のところでは、「ドラッグ」にチ ェックを入れ、「手でつまめる感覚」を大切に しています。そして最後に「ラベル」ですが、 通常ですとAのみとするところですが、ここを A(t)としてみました。すなわち、「この点Aは、 パラメータtで動いていますよ。」と表示してい るのです。これにより、どのパラメータを動か したら、どの点が動くのかが、はっきりします。 ラベルの「表示位置」は、一応「左上」としま した。表示が円周と重なってしまうことがある かもれませんが、まあ、これは適宜変更しても いいかと思われます。

以上で点 A の指定が終わりましたら,点 B(図 43),点 C(図44),点 D(図45)と4つほど,指 定しましょう。パラメータは,皆さんのお好き なものを適宜,選んでください。

(図43)図形Bの指定

(図44)図形Cの指定

(図45)図形Dの指定

(8)応用例としての円に内接する四角形

さて,ここまでを設定しますと,点A,点B, 点C,点Dがすべて同一点となってしまい,重 なってしまっています(図46)。

「これでは,ドラッグもできない!!」と, 思いきや,なんと点Aから順に,ドラッグがで きました。不思議な感じがしました。 さて,では,「円に内接する四角形の向かい合う内角の和は180 °である。」(教科書 p.20)をやってみましょう。 四角形ができる位置関係になるように点を移動させてください。図47の様になりましたでしょうか。

(図47)円に内接する四角形にする位置

そして,それぞれの点を結んでみてください。 (p.21の図8,9参照)

ここで, CDは, 線分とするのではなく,「半 直線」の形にしてみてください。ちょうど,図 48のような感じになったでしょうか。

(図48)それぞれを結んだところ

さてここで, CDの延長上に1つ点が欲しいと ころです。そこで,今回は,単純に「基本図形」 の点Eで設定しようと思います(図49)。

(図49)基本図形の点Eを使用

CDの延長上の点ということで,あまり「凝っ のです。

Ø III	k Tr	2			
<u>E</u> =					
	_				
開致	1 12	攅(2	関数3 日	1载4	
Α	в	\mathbf{C}	len	[]	
D	Е	\mathbf{F}	arg	det •	a b
G	\mathbf{H}	I	roll	回転	C á
J	К	L	分点、	交点	m n
\mathbf{M}	Ν	\mathbf{P}	垂足。	\$ 接点	P 9
Q	\mathbf{R}	S	外心	外径	\$ 1
т	0	х	内心	内径	# 1
.х	.y	.r	重心	垂心	k d
中.ft:m	id (A,E	0.分	底: mid(A,B,	n,n)	

(図50) マウスをもっていくと下のほうに「分点」の 説明が表示される。とても丁寧です(図50)。

図形Eのプロパティ 🔀
種類
\odot - 1 $\%$
E= 分点(C,D,2,-1)
▼ べかル表記
<u> 色太さ</u> 戦路 「ドラッグ
息 ≥ ~ ● □ 残像
⇒~μe P ^P P P ^P P P ^P P
<u>OK 削除 非沙地</u>

(図51)点Eを「分点」を用いて表現

式の形を見れば,一目瞭然ですね。そう,CD た」形は使いませんでした。「分点」を使った を2:1に「外分する点」としています(図51)。

(図52)点Eが表示された

そして次に, BAC, BDC, BDEの数値 を表示させてみましょう(図53)。 (やり方は, p.23の図17, p.24の図18, 19を参

照)

(図53)角度を見やすくするのもコツ

そして, 点A, 点B, 点C, 点D, および, 各 パラメータを変化させてみてください(図54)。

(図54)点Dを動かしてみた

3 おわりに

友田先生作のソフト GRAPES のすばらしさは, ここに挙げただけに留まりません。図形の分野 においても, p.25の図 28 を見てもわかるように, 多くのパラメータやコマンドが用意されていま す。

「数学 A」では、「三角形の性質」として、 「三角形の辺と角の大小」、「角の二等分線と辺 の比」、「三角形の重心・外心・内心」を扱いま すし、また「円の性質」として「円に内接する 四角形」、「円と直線」、「2円の位置関係」も扱 います。生徒たちにとって、実際に触って動か してみるという機会を得ることはとても有意義 なことだと考えられます。

ぜひ,この紙面で私が操作した以外のコマンドにも多く触れていただき,GRAPESのすばらしさを体感していただければと思います。

今後ともよろしくお願いします。

音が出せるようになった GRAPES

本原稿執筆中に,友田先生の御努力により, GRAPESが,Ver.6.40へとアップされました。 今回のアップにより,GRAPESは,PLAYコマ ンドが使えるようになったので,音が出せるよ うになりました。この応用分野は,非常に広く 考えられます。とくに,理科の分野においても GRAPESをおおいに活用していくことが可能と なるのではと期待されます。

ここで実際に紙面から音は出ませんが,友田 先生が作られたサンプルの中から紹介したいと 思います。

サイン波(正弦波)のきれいな音

様々な「波」の音を楽しむ

ぜひとも,皆さんも同僚の理科の先生方にも ご紹介いただければと思います(もちろんこれ 以外のサンプルも多く入っています)。